System calls and Page faults

ECE 469, Feb 18

Aravind Machiry

Recap: Interrupts

Hardware Interrupts

Software Interrupts

Recap: Hardware Interrupts

e A way of hardware interacting with CPU

e Example: a network device
o NIC: “Hey, CPU, | have a packet received for the OS, so please wake up the OS
to handle the data”
o CPU: call the interrupt handler for network device in ring O (set by the OS)

® Asynchronous (can happen at any time of execution)
o It's a request from a hardware, so it comes at any time of CPU’s execution

® Read
o

©)

https://en.wikipedia.org/wiki/Intel_8259
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller

Recap: Software Interrupts / exceptions

e A software mean to run code in ring O (e.g., int S0x30)
o Telling CPU that ”Please run the interrupt handler at 0x30”

e Synchronous (caused by running an instruction, e.g., int S0x30)

e System call
o int SOx30 L[] system call in JOS

Recap: Types of exceptions

e C(lassification based on how they are handled:

o Fault
Exception occurred but can be fixed
IP points to the current instruction

o Trap
Exception occurred but the program could continue execution
IP points to next instruction

o Abort
Unhandlable exception
Hardware failures in processor

Recap: Interrupts classification

Interrupts
Software

Interrupts/Exceptions
(synchronous)

Hardware Faults Trap
Interrupt (Recoverable) (Handlable)

(Asynchronous)

Recap: Handling Interrupts

Setting an Interrupt Descriptor Table (IDT)

Interrupt Number

0 (Divide error)

1 (Debug)

2 (NMI, Non-maskable Interrupt)
3 (Breakpoint)

4 (Overflow)

8 (Double Fault)
14 (Page Fault)

0x30 (syscall in JOS)

Code address

0xf0130304
0xf0153333
0xf0183273
0xf0223933
0xf0333333

0xf0222293

0xf0133390

0xf0222222

X X
XX X
- - e®oo
Recap: Handling Interrupts 3T
: ®
e Setting an Interrupt Descriptor Table (IDT) Load the base address into IDTR
Interrupt Number Code address
0 (Divide error) 0xf0130304
IDTR Register
1 (Debug) 0xf0153333 i IDT Base Address 16[15 IDT Limit '
2 (NMI, Non-maskable Interrupt) 0xf0183273)
3 (Breakpoint) 0xf0223933 l Interrupt
»@ =DescrlptorTable (IDT)
4 (Overflow) 0xf0333333 it yene
8 (Double Fault) 0xf0222293 maristss 1
14 (Page Fault) 0xf0133390 Figure 6-1. Relationship of the IDTR and IDT

0x30 (syscall in JOS) 0xf0222222 7

Recap: Handling Interrupts

e Setting an Interrupt Descriptor Table (IDT)

Interrupt Number Code address

0 (Divide error) t_divide
1 (Debug) t_debug
2 (NMI, Non-maskable Interrupt) t_nmi

3 (Breakpoint) t_brkpt

4 (Overflow) t_oflow
8 (Double Fault) t_dblflt

14 (Page Fault) t_pgflt

0x30 (syscall in JOS) t_syscall

void
trap_init(void)

Recap: JOS Interrupt Hand | i

SETGATE(idt[T_DIVIDE], 0, GD_KT, t_divide, 0);

SETGATE(idt[T_DEBUG], 0, GD_KT, t_debug, 0);

* Setup the IDT at trap_init() in kern/trap.c

void
trap_init(void)

Recap: JOS Interrupt Hand | i

SETGATE(idt[T_DIVIDE], 0, GD_KT, t_divide, 0);
SETGATE(idt[T_DEBUG], 0, GD_KT, t_debug, 0);

* Setup the IDT at trap_init() in kern/trap.c

* Interrupt arrives to CPU!
* Call interrupt hander in IDT
e Call _alltraps (in kern/trapentry.S)

10

void
trap_init(void)

Recap: JOS Interrupt Hand | i

SETGATE(idt[T_DIVIDE], 0, GD_KT, t_divide, 0);
SETGATE(idt[T_DEBUG], 0, GD_KT, t_debug, 0);

* Setup the IDT at trap_init() in kern/trap.c

* Interrupt arrives to CPU!

* Call interrupt hander in IDT

e Call _alltraps (in kern/trapentry.S)
e Call trap() in kern/trap.c

Build a
Trapframe!

11

void
trap_init(void)

Recap: JOS Interrupt Hand | i

SETGATE(idt[T_DIVIDE], 0, GD_KT, t_divide, 0);
SETGATE(idt[T_DEBUG], 0, GD_KT, t_debug, 0);

struct Trapframe { .globl
struct PushRegs tf_regs; .type n , @
uintlo_t tf_es; .align 2
uintl6_t tf_paddingl; .
uintlo_t tf_ds; oF
uintl6_t tf_padding2; " $(’)

uint32_t tf_trapno;

vint325t tferr:
uintptr_t tf_eip;
uintle t tf cs:

uintl6_t tf_padding3;
uint32_t tf_eflags;

Build a
Trapframe!

O\o O\o

uintptr_t tf_esp;
uintl6e_t tf_ss;

uintl6_t tf_padding4;
attribute__((packed));

void
trap_init(void)

Recap: JOS Interrupt Hand | i

SETGATE(idt[T_DIVIDE], 0, GD_KT, t_divide, 0);
SETGATE(idt[T_DEBUG], 0, GD_KT, t_debug, 0);

* Setup the IDT at trap_init() in kern/trap.c

* Interrupt arrives to CPU!
* Call interrupt hander in IDT
e Call _alltraps (in kern/trapentry.S)

e Call trap() in kern/trap.c |
o Build a
%eS Trapframe!

void

trap(struct Trapframe *tf)
{

13

void
trap_init(void)

Recap: JOS Interrupt Hand | i

SETGATE(idt[T_DIVIDE], 0, GD_KT, t_divide, 0);
SETGATE(idt[T_DEBUG], 0, GD_KT, t_debug, 0);

* Setup the IDT at trap_init() in kern/trap.c

* Interrupt arrives to CPU!

e Call interrupt hander in IDT

e Call _alltraps (in kern/trapentry.S)
e Call trap() in kern/trap.c

e Call trap_dispatch() in kern/trap.c ' . Builda

Trapframe!
static void
trap_dispatch(struct Trapframe *tf) void

{ trap(struct Trapframe *tf)

{ 14

Today

Syscalls

Page fault

15

Syscall:

User/Kernel communication

User Level (Ring 3)

Libraries

OS Kernel (Ring 0)

16

Syscall: User/Kernel communication

User Level (Ring 3)

printf(“ECE469") C’ B
Alibrary call in ring 3

Libraries

OS Kernel (Ring 0)

17

Syscall: User/Kernel communication

User Level (Ring 3)

printf(“ECE469") C’ B
Alibrary call in ring 3

Libraries

sys_write(1, “ECE469”, 6);

A system call, From ring 3

OS Kernel (Ring 0)

18

Syscall: User/Kernel communication

User Level (Ring 3)

printf(“ECE469") C’ B
Alibrary call in ring 3

Libraries

sys_write(1, “ECE469”, 6);

A system call, From ring 3

Interrupt!, switch from ring3 to ring0 OS Kernel (Ring 0)

19

Syscall: User/Kernel communication

User Level (Ring 3)

printf(“ECE469") C’ B
Alibrary call in ring 3

Libraries

sys_write(1, “ECE469”, 6);

A system call, From ring 3

Interrupt!, switch from ring3 to ring0 OS Kernel (Ring 0)

A kernel function

do_sys_write(1, “ECE469”, 6) ﬁ

20

Syscall: User/Kernel communication

User Level (Ring 3)

printf(“ECE469") C’ B
Alibrary call in ring 3

Libraries

sys_write(1, “ECE469”, 6); . . .
A system call, From ring 3 iret (ring O to ring 3)

Interrupt!, switch from ring3 to ring0 OS Kernel (Ring 0)

A kernel function

do_sys_write(1, “ECE469”, 6) ﬁ

21

Syscall: User/Kernel communication

User Level (Ring 3)

printf(“ECE469”) () B

Alibrary call in ring 3

ret (ring 3)

Libraries

sys_write(1, “ECE469”, 6); . . .
A system call, From ring 3 iret (ring O to ring 3)

Interrupt!, switch from ring3 to ring0 OS Kernel (Ring 0)

A kernel function

do_sys_write(1, “ECE469”, 6) ﬁ

22

The need for syscalls?

* We cannot let a process access peripherals.

User Level (Ring 3)

> 4 s

Libraries

OS Kernel (Ring 0)

ek

The need for syscalls?

* We cannot let a process access peripherals.

User Level (Ring 3)

Libraries

OS Kernel (Ring 0)

=== 24

The need for syscalls?

* We cannot let a process access peripherals.

User Level (Ring 3)

Librallies

OS Kernel (Ring 0)

=ie= 95

The need for syscalls?

* We cannot let a process access peripherals.

* Why do we have privilege separation?
* Security!

* We do not know what application will do
* Do not allow dangerous operations to system
* Flash BIOS, format disk, deleting system files, etc.

* Let only the OS can access hardware
* Apply access control on accessing hardware resources!
e E.g., only the administrator can format disk

User Level (Ring 3)

Libra\ips

\
)

OS Kernel (%\g 0))]

The need for syscalls?

* We cannot let a process access peripherals.

* Why do we have privilege separation?
* Security!

* We do not know what application will do

* Do not allow dangerous operations to system
* Flash BIOS, format disk, deleting system files, etc.

* Let only the OS can access hardware
* Apply access control on accessing hardware resources!

OS must mediate hardware access request from

userspace, and we handle this via

User Level (Ring 3)

9| & B
Libra\ips

\
)

OS Kernel (%\g 0))]

Library Calls v/s System calls sses
Ring 3
* Library Calls
* APIs available in Ring 3 Librb‘:ans
* DO NOT include operations in Ring O

e Cannot access hardware directly oS
* Could be a wrapper for some computation or

* Could be a wrapper for system calls
* E.g., printf() internally uses write(), which is a system call Hardware

* Some system calls are available as library calls
* As wrappers in Ring 3 NAME

Syscalls

read - read from a file descriptor

SYNOPSIS
#include <unistd.h>

ssize_t read(int fd, void *buf, size_t count);

Library Calls v/s System calls

Ring 3

e Library Calls
alls

* APIs available in Ring 3 Librbc
* DO NOT include operations in Ring O

e Cannot access hardware directly
* Could be a wrapper for some computation or
* Could be a wrapper for system calls

* E.g., printf() internally uses write(), which is a system call

* Some system calls are available as library calls
* As wrappers in Ring 3 NAME

Syscalls

read - read from a file descriptor

SYNOPSIS
#include <unistd.h>

ssize_t read(int fd, void *buf, size_t count);

Library Calls v/s System calls

Ring 3

e Library Calls
alls

* APIs available in Ring 3 Librbc
* DO NOT include operations in Ring O

e Cannot access hardware directly
* Could be a wrapper for some computation or

* Could be a wrapper for system calls
* E.g., printf() internally uses write(), which is a system call

Syscalls

Hardware

* Some system calls are available as library calls

* As wrappers in Ring 3 NAME
read - read from a file descriptor

SYNOPSIS
#include <unistd.h>

ssize_t read(int fd, void *buf, size_t count);

Library Calls v/s System calls

App
e System Calls _ :
]]] printf() sys_write()
* APIs available in Ring O
» OS’s abstraction for hardware
interface for userspace scanf()
]] . sys_read()
* Called when Ring 3 application
need to perform Ring O
operations send() sys_send()
Ring 3 Ring O
Unprivileged Privileged

31

System calls are not function calls!

App
printf() .
Sl Gl sys_write()
- other_func()
sys_read()
el sys_send()
Ring 3 Ring O
Unprivileged Privileged

32

System calls are not function calls!

App

printf()

bad_func()_ sys_write()

other_func()

scanf()
sys_read()
el sys_send()
Ring 3 Ring O
Unprivileged Privileged

33

(N X J
(N N N
- 9O O
System calls are not function calls! e2c
@
App
* Application should not call arbitrary OS -
functions baF:j_func() sys_write()
* If so, app can do all operations that OS N T)
can do; privilege separation is scanf{() -
meaningless! sys_read()
el sys_send()
Ring 3 Ring O
Unprivileged Privileged

34

System calls are not function calls! I

* Application should not call arbitrary OS

functions b aF:jrl?Efr(mz: 0 sys_write()
* If so, app can do all operations that OS stk el
can do; privilege separation is scanf{() -
meaningless! sys_read()

send()

sys_send()

* How can we protect this, in other
words, how can we let apps invoke
system calls but no other OS
functions?

Unprivileged Privileged
35

Ring 3 I Ring O

System call Design via call gate

* Call gate: a secure method to control access to Ring O!

36

System call Design via call gate

* Call gate: a secure method to control access to Ring 0!

App

printf()

scanf()

send()

fwrite()

System call gate
(syscall() in JOS)

sys_write()
Trap/syscall(
) sys_read()
sys_send()

sys_write()
other_func()

sys_read()

sys_send()

37

System call Design via call gate

* Call gate: a secure method to control access to Ring 0!

App

printf() \

scanf()

send()

fwrite()

4

)

System call gate
(syscall() in JOS)

sys_write()

Trap/syscall(

sys_read()

sys_send()

sys_write()
other_func()

sys_read()

sys_send()

38

System call Design via call gate

* Call gate: a secure method to control access to Ring 0!

App

printf() \

scanf()

send()

fwrite()

4

:

System call gate
(syscall() in JOS)

sys_write()

Trap/syscall(

)

sys_read()

sys_send()

sys_write()

other_func()

sys_read()

39

System call Design via call gate

* Call gate: a secure method to control access to Ring 0!

App

printf() \

scanf()

send()

fwrite()

4

:

System call gate
(syscall() in JOS)

sys_write()

Trap/syscall(

e

sys_read()

sys_send()

sys_write()

other_func()

sys_read()

40

System call Design via call gate

* Call gate: a secure method to control access to Ring 0!

App

printf() \

scanf()

send()

fwrite()

/

:

System call gate
(syscall() in JOS)

sys_write()

Trap/syscall(

al

sys_read()

sys_send()

sys_write()

other_func()

sys_read()

41

System call Design via call gate

* Call gate: a secure method to control access to Ring 0!

App

printf() \

scanf()

send()

fwrite()

System call gate
(syscall() in JOS)

s_write()
Tra p/syscEIY(y

/

:

sys_read()
/7" \Ss_sendo

sys_write()
other_func()

sys_read()

sys_send()

42

System call Design via call gate

* Call gate: a secure method to control access to Ring 0!

App

printf() \

scanf()

send()

fwrite()

ﬂ ~Ayfs_read()
// Xs_send() -

System call gate
(syscall() in JOS)

’sz_write() 1
Trap/syscall(

—

/

:

sys_write()
other_func()

sys_read()

sys_send()

43

Call gate via Interrupt Handler

* Call gate

Ring 3
 System call can be invoked only with trap handler
e int $0x30-inJOS
* int $0x80 —in Linux (32-bit) Librb(:alls
e int $0x2e —in Windows (32-bit)
 sysenter/sysexit (32-bit) 0S Syscalls

* syscall/sysret (64-bit)

* OS performs checks if userspace is doing a right thing

» Before performing important ring O operations
* E.g., accessing hardware..

44

Call gate via Interrupt Handler

* Call gate

Ring 3
 System call can be invoked only with trap handler
e int $0x30-inJOS
* int $0x80 —in Linux (32-bit) Librb(:alls
e int $0x2e —in Windows (32-bit) int $0x30
* sysenter/sysexit (32-bit) CHECK!'! Syscalls

* syscall/sysret (64-bit)

Hardware

* OS performs checks if userspace is doing a right thing
» Before performing important ring O operations
* E.g., accessing hardware..

45

Why should we check arguments?

* How can we protect ‘read ()’ system call?
*read (int fd, void *buf, size t count)
* Read count bytes from a file pointed by £d and store those in buf

* Usage

char buf[512];

read(@, buf, 512);

46

Why should we check arguments?

* Problem: what will happen if we call...

char kernel_address = KERNBASE + 0x100000;

read(@, buf, 512);

* This will overwrite kernel code with your keystroke typing..
* Changing kernel code from Ring 3 is possible!

47

Checking arguments for syscalls

* We can hook all syscalls from Ring 3 at our syscall trap handler

System call gate
(syscall() in JOS)

sys_write()
APP sys_write()
her_f
read(0, stack_buffer, 512); | .. ')I'rap/syscall(Sys endl) other_func()
- sys_read()
sys_send()

48

Checking arguments for syscalls

* We can hook all syscalls from Ring 3 at our syscall trap handler

System call gate
(syscall() in JOS)

sys_write()
e sys_write()
her_f
read(0, stack_buffer, 512); | Trap/syscall(o other_func()
Checlgarguments?ys— €
sys_read()
Userladdress!
sys_send()

49

Checking arguments for syscalls

* We can hook all syscalls from Ring 3 at our syscall trap handler

System call gate
(syscall() in JOS)

sys_write()
B sys_write()
her_f
read(0, stack_buffer, 512); | o Trap/syscg(VS o other_func()
Checlgarguments. - svs_read()
User [adldress! YS_
sys_send()

50

Checking arguments for syscalls

* We can hook all syscalls from Ring 3 at our syscall trap handler

System call gate
(syscall() in JOS)

sys_write()
B sys_write()
her_f
read(0, stack_buffer, 512); | o Trap/syscg(VS o other_func()
Checlgarguments. - svs_read()
User [adldress! YS_
sys_send()

51

Checking arguments for syscalls

* We can hook all syscalls from Ring 3 at our syscall trap handler

App

read(0, kernel_address, 512); |

System call gate
(syscall() in JOS)

sys_write()

Trap/syscall(

)

sys_read()

sys_send()

sys_write()

other_func()

sys_read()

52

Checking arguments for syscalls

* We can hook all syscalls from Ring 3 at our syscall trap handler

App

read(0, kernel_address, 512); |

Chec
No k¢
addr

System call gate
(syscall() in JOS)

sys_write()
Trap/syscall(

Igarguments?ys—read()

brnel

ccl sys_send()

sys_write()

other_func()

sys_read()

53

Checking arguments for syscalls

* We can hook all syscalls from Ring 3 at our syscall trap handler

Error

System call gate
(syscall() in JOS)

rap/syscall(

App /\ sys_write()
Ti
”

read(0, kernel_address, 512); |

Chec
No k¢
addr

Igarguments?ys—read()

brnel
bss !

sys_send()

sys_write()

other_func()

sys_read()

54

Test: using Itrace and strace

// buffer at the stack

char buf[512];

// read 512 bytes from stdin to stack.
int ret = read(0, buf, 512);

printf("Read to stack memory returns: %d\n", ret);

// read 512 bytes from stdin to kernel.
ret = read(0, (voidx)oxffffffff01000000,512);

printf("Read to kernel memory returns: %d\n", ret);
perror ("Reason for the error:");

55

Summary: Syscalls

* Prevent Ring 3 from accessing hardware directly
* Security reasons!
* OS mediates hardware access via system calls

* You may regard system calls as APIs of an OS

* How to prevent an application from running arbitrary ring O operation?
 Call gate

* Modern OS use call gate to protect system calls
At trap handler, an OS can apply access control to system call request

56

Faults

* Faults
* Faulting instruction has not executed (e.g., page fault)
* Resume the execution after handling the fault

* Resume the execution after handling the fault

57

Page faults

* Occurs when paging (address translation) fails

58

Page faults

* Occurs when paging (address translation) fails
* Access from user but ! (pte&PTE U) : protection violation

59

Page faults

* Occurs when paging (address translation) fails
* Access from user but ! (pte&PTE U) : protection violation

int main() {
char *kernel_memory = (char*)0xf0100000;

kernel_memory[100] = "!';

movb $0x21,

60

Page faults

. B TRAP frame at 0xf01c0000
* Occurs when paging (address translati (TP SsTees

* Access from user but ! PTE g esi 0x00000000
(ptes —U) ebp Oxeebfdfdo0

oesp Oxefffffdc
ebx 0x00000000

int main() { edx 0x00000000

* - ¥ ecx 0x00000000
char *kernel_memory = (char*)oxfo1 onbifaibiotioi

Ox----0023
Ox----0023

kernel_memory[100] = "!'; 0x0000000e Page Fault
0xf0100064

0x00000007 [user, write, protection]

0x00800039
movh $0x21, cs 0x----001b
flag 0x00000096
esp Oxeebfdfb8
SS Ox----0023

[00001000] free env 00001000

What does CPU do on a page fault?

* CPU let OS know why and where such a page fault happened

TRAP frame at 0xf01c0000
edi
esi
ebp

oesp
ebx
edx
ecx
eax
es
ds
trap
cr2
err
eip
cs
flag
esp

kernel_memory[100] [L -

0x00000000
0x00000000
Oxeebfdfdo
Oxefffffdc
0x00000000
0x00000000
0x00000000
Oxeec00000
0x----0023
0x----0023

0x0000000e Page Fault

0xf0100064
0x00000007
0x00800039
0x----001b
0x00000096
Oxeebfdfb8

P NN

[user, write, protection]

62

What does CPU do on a page fault?

* CPU let OS know why and where such a page fault happened

e CR2: stores the address of the fault

TRAP frame at 0xf01c0000

edi
esi
ebp
oesp
ebx
edx
ecx
eax
es
ds
trap
cr2
err
eip
cs
flag
esp

0x00000000
0x00000000
Oxeebfdfdo
Oxefffffdc
0x00000000
0x00000000
0x00000000
Oxeec00000
0x----0023
0x----0023
0x0000000e
0xf0100064
0X0VVVVOO/
0x00800039
0x----001b
0x00000096
Oxeebfdfb8

P NN

Page Fault

Luser, write, protection]

kernel_memory[100] [L -

CR2

31

Page fault v%s 0Xf0 100064

63

What does CPU do on a page fault?

* CPU let OS know why and where such a page fault happened
* CR2: stores the address of the fault 2

* Error code: stores the reason of the fault e 0%01 00064

RAF ame a 0 0 D000
ed Ox00000000 a1 i 5. 4 31 2 11 i
2 Ox00000000 7| FIBFEEE
Reserved Q Reserved A0|12|a
ebp DxeebTaTdl °n
oesp 0Oxe 0 L
P 0 The fault was caused by a non-pre: age.
=18 Ux00000000 1 The fault was caused by a evel protection violation.
ed Ox00000000
WIR 0 The access ng the fault was a read.
= Ux00000000 1 The causing the fault was a write.
g Oxeec00000
- 0 00 U/ 0 A supervisor-mode access caused the fault.
1 A user-mode access caused the fault.
0 0 DO
. RSVD 0 The fault was not caused by reserved bit violation.
ap 0x0000000e dg€ = 1 The fault was caused by a reserved bit set to 1 in some
0 0100064 paging-structure entry.
= Ux0000000 = = prote 0 1ID 0 The fault was not caused by an instruction fetch.
81D 0x00800030 1 The fault was caused by an instruction fetch.
2 00.Llhb PK 0 The fault was not caused by protection keys.
ag 0x00000096 1 There was a protection-key violation.
esp DxeebTdThd

SGX 0 The fault is not related to SGX.
1 The fault resulted from violation of SGX-specific access-control

= = requirements.
U 010 00001000 q

How does OS handle page fault?

* User program accesses 0xf0100064

65

How does OS handle page fault?

* User program accesses 0xf0100064

* CPU generates page fault (pte&PTE_U == 0)
 Put the faulting address on CR2
* Put an error code
* Calls page fault handler in IDT

66

How does OS handle page fault?

* User program accesses 0xf0100064

* CPU generates page fault (pte&PTE_U == 0)
* Put the faulting address on CR2
e Put an error code
* Calls page fault handler in IDT

* OS: page_fault_handler

67

How does OS handle page fault?

* User program accesses 0xf0100064

* CPU generates page fault (pte&PTE_U == 0)
 Put the faulting address on CR2
e Put an error code
e Calls page fault handler in IDT

* OS: page_fault_handler
* Read CR2 (address of the fault, 0xf0100064)

68

How does OS handle page fault?

* User program accesses 0xf0100064

* CPU generates page fault (pte&PTE_U ==0)
* Put the faulting address on CR2
* Put an error code
* Calls page fault handler in IDT

e OS: page_fault_handler
* Read CR2 (address of the fault, 0Oxf0100064)
* Read error code (contains the reason of the fault)

69

How does OS handle page fault?

* User program accesses 0xf0100064

* CPU generates page fault (pte&PTE_U == 0)
* Put the faulting address on CR2
* Put an error code
* Calls page fault handler in IDT

e OS: page_fault_handler
* Read CR2 (address of the fault, 0xf0100064)
* Read error code (contains the reason of the fault)
* Resolve error (if not, destroy the environment)

70

How does OS handle page fault?

* User program accesses 0xf0100064

* CPU generates page fault (pte&PTE_U == 0)

* OS:

Put the faulting address on CR2
Put an error code
Calls page fault handler in IDT

page_fault_handler

Read CR2 (address of the fault, 0xf0100064)

Read error code (contains the reason of the fault)
Resolve error (if not, destroy the environment)
Continue user execution

71

How does OS handle page fault?

* User program accesses 0xf0100064

* CPU generates page fault (pte&PTE_U == 0)
* Put the faulting address on CR2
* Put an error code
* Calls page fault handler in IDT

* OS: page_fault_handler
* Read CR2 (address of the fault, 0xf0100064)
* Read error code (contains the reason of the fault)
* Resolve error (if not, destroy the environment)
* Continue user execution

* User: resume on that instruction (or destroyed by the OS)

72

Page fault example (2): Handling call stack

*inc/memlayout.h
* We allocate one (1) page for the user stack

73

Page fault example: Handling call stack

*inc/memlayout.h
* We allocate one (1) page for the user stack

* If you use a large local variable on the stack
» Stack overflow (stack grows down...)
int func() {
char buf[8192];
buf[0] = '1"';

}

Page fault example: Handling call stack

*inc/memlayout.h
* We allocate one (1) page for the user stack

* If you use a large local variable on the stack
» Stack overflow (stack grows down...)
int func() {
char buf[8192];
buf[0] = '1"';

}

Expand stack automatically

* Can we detect such an access and allocate a new page for the stack
automatically?
* Yes

* We will utilize ‘Page Fault’

* Observations
» Stack overflow would be sequential (access pages adjacent to the stack)
* We should catch both read/write access (both should fault)

76

Expand stack automatically

e Stack ends at Oxeebfd000

 Suppose the current value of esp (stack) is Oxeebfe000

* Oxeebfd010 esp
* Oxem

77

Expand stack automaticaljms 32
char buf[32];
for(int 1=0; 1<32; ++i) {

bufi[ft|F=N1 "N

e Stack ends at Oxeebfd000

 Suppose the current value of esp (stack) is Oxeebfe000
* Oxeebfd010 esp
_ Oxem
User program creates a new variable: char buf [32] ouf ——
* buf = OxeebfcffO Oxeebfc000

* Buffer range: Oxeebfcff0 ~ Oxeebfd010

78

Expand stack automaticaljewe °°
char buf[32];
for(int 1=0; 1<32; ++1) {

bufi[ft|F=N1 "N

e Stack ends at Oxeebfd000

 Suppose the current value of esp (stack) is Oxeebfe000
* Oxeebfd010 esp
_ Oxem
User program creates a new variable: char buf [32] ouf ——
* buf = OxeebfcffO Oxeebfc000

* Buffer range: Oxeebfcff0 ~ Oxeebfd010
* On accessingbuf [0] = ‘1';

* movb $0x31, (%eax)

79

Expand stack automaticaljewe °°
char buf[32];
for(int 1=0; 1<32; ++1) {

bufi[ft|F=N1 "N

e Stack ends at Oxeebfd000

* Suppose the current value of esp (stack) is Oxeebfe000
* Oxeebfd010 esp
. . (M;QEDQL‘
» User program creates a new variable: char buf[32]

ing!
* buf = Oxeebfcffl bgf — - _NO_ma_pring_- _
* Buffer range: Oxeebfcff0 ~ Oxeebfd010 xeebtc

* On accessingbuf [0] = ‘1';
* movb S0x31, (%eax)
* cax = Oxeebfcff0 No translation for 0Oxeebfc000

80

Expand stack automaticaljewe °°
char buf[32];
for(int 1=0; 1<32; ++1) {

bufi[ft|F=N1 "N

e Stack ends at Oxeebfd000

* Suppose the current value of esp (stack) is Oxeebfe000
* Oxeebfd010 esp
. . (M;QEDQL‘
» User program creates a new variable: char buf[32]

ing!
* buf = Oxeebfcffl bgf — - _NO_ma_pring_- _
* Buffer range: Oxeebfcff0 ~ Oxeebfd010 xeebtc

* On accessingbuf [0] = ‘1';
* movb S0x31, (%eax)

* cax = OxeebfcffO No translation for Oxeebfc000
* Need to allocate 0xeebfc000 ~ Oxeebfd000

81

What does processor do?

* Lookup page table
* No translation!

What does processor do?

* Lookup page table
* No translation!

What does processor do?

* Lookup page table
* No translation!

*Store Oxeebfcff0O to CR2

What does processor do?

* Lookup page table
* No translation!

*Store Oxeebfcff0O to CR2

*Set error code
* “The fault was caused by a non-present page!”

What does processor do?

* Lookup page table
* No translation!

*Store Oxeebfcff0O to CR2

*Set error code
* “The fault was caused by a non-present page!”

* Raise page fault exception (interrupt #14) -> call page fault handler

Handling page fault on Stack access

* Interrupt will make CPU invoke the page fault_handler()

Oxeebfe000

Oxeebfd000

No mapping!

87

Handling page fault on Stack access

* Interrupt will make CPU invoke the page fault_handler()

* Read CR2 Oxeebfe000
* Oxeebfcffl

Oxeebfd000

No mapping!

88

Handling page fault on Stack access

* Interrupt will make CPU invoke the page fault_handler()

* Read CR2 Oxeebfe000
* OxeebfcffO,itseems like the page right next to current stack end
* The current stack end is: Oxeebfd000

Oxeebfd000

No mapping!

89

Handling page fault on Stack access

* Interrupt will make CPU invoke the page fault_handler()

* Read CR2 Oxeebfe000

* OxeebfcffO,itseems like the page right next to current stack end Oxeebd000
* The current stack end is: Oxeebfd000 xee

No mapping!
e Read errorcode e e e -———-—

'II

* “The fault was caused by a non-present page

90

Handling page fault on Stack access

* Interrupt will make CPU invoke the page fault_handler()

* Read CR2 Oxeebfe000

* OxeebfcffO,itseems like the page right next to current stack end Oxeebd000
* The current stack end is: Oxeebfd000 xee

No mapping!
e Read errorcode e e e -———-—

'II

* “The fault was caused by a non-present page

* Let’s allocate a new page for the stack!

91

Adding new page for stack

 Allocate a new page for the stack

* Struct PagelInfo *pp = page alloc(ALLOC ZERO) ;
* Get a new page, and wipe it to have all zero as its contents

Oxeebfe000

Oxeebfd000

Oxeebfc000

92

Adding new page for stack

 Allocate a new page for the stack

* Struct PagelInfo *pp = page alloc(ALLOC ZERO) ;

* Get a new page, and wipe it to have all zero as its contents Oxeebfe000

* page insert (env pgdir, pp, Oxeebfc000, PTE U| PTE—Wé)(eebdeOO
* Map a new page to that address!

Oxeebfc000

93

Adding new page for stack

 Allocate a new page for the stack

* Struct PagelInfo *pp = page alloc(ALLOC ZERO) ;

* Get a new page, and wipe it to have all zero as its contents Oxeebfe000

* page_insert (env_pgdir, pp, Oxeebfc000, PTE_UIPTE_Wj i 14000

* Map a new page to that address!

* iret! Oxeebfc000

94

Resuming execution of user process

* On accessingbuf [0] = ‘1';

* movb $0x31, (%eax) Oxeebfe000

* cax = 0OxeebfcffO0 No translation for 0xeebfc000 A
Oxeebfd000

Oxeebfc000

95

Resuming execution of user process

* On accessingbuf [0] = ‘1';

* movb S0x31, (%eax)

Oxeebfe000
* cax = OxeebfcffO0 No translation for Oxeebfc000
. . . . Oxeebfd000
* Execute the faulting instruction again: buf [0] = ‘1’; xee
* movb $0x31, (%eax) Oxeebfc000

* cax = OxeebfcffO

Resuming execution of user process

* On accessingbuf [0] = ‘1';

* movb S0x31, (%eax)

Oxeebfe000
* cax = OxeebfcffO0 No translation for Oxeebfc000
. . . . Oxeebfd000
* Execute the faulting instruction again: buf [0] = ‘1’; xee
* movb $0x31, (%eax) ~eebfc000

* cax = OxeebfcffO0 Now translation i1s wvalid!

Resuming execution of user process

* On accessingbuf [0] = ‘1';

* movb S0x31, (%eax)

Oxeebfe000
* cax = OxeebfcffO0 No translation for Oxeebfc000 A
. . . . Oxeebfd000
* Execute the faulting instruction again: buf [0] = ‘1’; xee
* movb $0x31, (%eax) ~eebfc000

* cax = OxeebfcffO0 Now translation i1s wvalid!

* Continue to execute the loop..

(N X J
(N N N
9O O
- : 35
Resuming execution of user process :
* On accessingbuf [0] = ‘1';
* movb S0x31, (%eax) Oxeebfe000
* eax = OxeebfcffO No translation for Oxeebfc000 A
« Execute the faulting instruction again: buf [0] = ‘17, 0xeebfd0o0
* movb $0x31, (%eax) e ebfc000
* eax = OxeebfcffO0 Now translation is wvalid!
* Continue to execute the loop..
By exploiting page fault and its handler, we can implement :

automatic allocation of user stack! Fo

