
System calls and Page faults
ECE 469, Feb 18

Aravind Machiry

1

Recap: Interrupts

● Hardware Interrupts

● Software Interrupts

2

Recap: Hardware Interrupts

● A way of hardware interacting with CPU

● Example: a network device
○ NIC: “Hey, CPU, I have a packet received for the OS, so please wake up the OS

to handle the data”
○ CPU: call the interrupt handler for network device in ring 0 (set by the OS)

● Asynchronous (can happen at any time of execution)
○ It’s a request from a hardware, so it comes at any time of CPU’s execution

● Read
○ https://en.wikipedia.org/wiki/Intel_8259
○ https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller

https://en.wikipedia.org/wiki/Intel_8259
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller

3

Recap: Software Interrupts / exceptions

● A software mean to run code in ring 0 (e.g., int $0x30)
○ Telling CPU that ”Please run the interrupt handler at 0x30”

● Synchronous (caused by running an instruction, e.g., int $0x30)

● System call
○ int $0x30 🡨 system call in JOS

4

Recap: Types of exceptions

● Classification based on how they are handled:

○ Fault
■ Exception occurred but can be fixed
■ IP points to the current instruction

○ Trap
■ Exception occurred but the program could continue execution
■ IP points to next instruction

○ Abort
■ Unhandlable exception
■ Hardware failures in processor

5

Recap: Interrupts classification

Interrupts

Hardware
Interrupt

(Asynchronous)

Software
Interrupts/Exceptions

(synchronous)

Faults
(Recoverable)

Trap
(Handlable)

Abort
(Processor

errors)

6

Recap: Handling Interrupts

● Setting an Interrupt Descriptor Table (IDT)

Interrupt Number Code address

0 (Divide error) 0xf0130304

1 (Debug) 0xf0153333

2 (NMI, Non-maskable Interrupt) 0xf0183273

3 (Breakpoint) 0xf0223933

4 (Overflow) 0xf0333333

…
8 (Double Fault) 0xf0222293

…
14 (Page Fault) 0xf0133390

... …
0x30 (syscall in JOS) 0xf0222222

7

Recap: Handling Interrupts

● Setting an Interrupt Descriptor Table (IDT)

Interrupt Number Code address

0 (Divide error) 0xf0130304

1 (Debug) 0xf0153333

2 (NMI, Non-maskable Interrupt) 0xf0183273

3 (Breakpoint) 0xf0223933

4 (Overflow) 0xf0333333

…
8 (Double Fault) 0xf0222293

…
14 (Page Fault) 0xf0133390

... …
0x30 (syscall in JOS) 0xf0222222

Load the base address into IDTR

8

Recap: Handling Interrupts

● Setting an Interrupt Descriptor Table (IDT)

Interrupt Number Code address

0 (Divide error) t_divide

1 (Debug) t_debug

2 (NMI, Non-maskable Interrupt) t_nmi

3 (Breakpoint) t_brkpt

4 (Overflow) t_oflow

…
8 (Double Fault) t_dblflt

…
14 (Page Fault) t_pgflt

... …
0x30 (syscall in JOS) t_syscall

9

Recap: JOS Interrupt Handling

• Setup the IDT at trap_init() in kern/trap.c

10

Recap: JOS Interrupt Handling

• Setup the IDT at trap_init() in kern/trap.c

• Interrupt arrives to CPU!

• Call interrupt hander in IDT

• Call _alltraps (in kern/trapentry.S)

11

Recap: JOS Interrupt Handling

• Setup the IDT at trap_init() in kern/trap.c

• Interrupt arrives to CPU!

• Call interrupt hander in IDT

• Call _alltraps (in kern/trapentry.S)

• Call trap() in kern/trap.c
Build a
Trapframe!

12

Recap: JOS Interrupt Handling

• Setup the IDT at trap_init() in kern/trap.c

• Interrupt arrives to CPU!

• Call interrupt hander in IDT

• Call _alltraps (in kern/trapentry.S)

• Call trap() in kern/trap.c
Build a
Trapframe!

13

Recap: JOS Interrupt Handling

• Setup the IDT at trap_init() in kern/trap.c

• Interrupt arrives to CPU!

• Call interrupt hander in IDT

• Call _alltraps (in kern/trapentry.S)

• Call trap() in kern/trap.c
Build a
Trapframe!

14

Recap: JOS Interrupt Handling

14

Build a
Trapframe!

• Setup the IDT at trap_init() in kern/trap.c

• Interrupt arrives to CPU!

• Call interrupt hander in IDT

• Call _alltraps (in kern/trapentry.S)

• Call trap() in kern/trap.c

• Call trap_dispatch() in kern/trap.c

15

Today

● Syscalls

● Page fault

16

Syscall: User/Kernel communication

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

16

17

Syscall: User/Kernel communication

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

17

printf(“ECE469”)

A library call in ring 3

18

Syscall: User/Kernel communication

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

18

printf(“ECE469”)

sys_write(1, “ECE469”, 6);

A library call in ring 3

A system call, From ring 3

19

Syscall: User/Kernel communication

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

19

printf(“ECE469”)

sys_write(1, “ECE469”, 6);

A library call in ring 3

A system call, From ring 3

Interrupt!, switch from ring3 to ring0

20

Syscall: User/Kernel communication

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

20

printf(“ECE469”)

sys_write(1, “ECE469”, 6);

A library call in ring 3

A system call, From ring 3

do_sys_write(1, “ECE469”, 6)
A kernel function

Interrupt!, switch from ring3 to ring0

21

Syscall: User/Kernel communication

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

21

printf(“ECE469”)

sys_write(1, “ECE469”, 6);

A library call in ring 3

A system call, From ring 3

do_sys_write(1, “ECE469”, 6)
A kernel function

Interrupt!, switch from ring3 to ring0

iret (ring 0 to ring 3)

22

Syscall: User/Kernel communication

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

22

printf(“ECE469”)

sys_write(1, “ECE469”, 6);

A library call in ring 3

A system call, From ring 3

do_sys_write(1, “ECE469”, 6)
A kernel function

Interrupt!, switch from ring3 to ring0

iret (ring 0 to ring 3)

ret (ring 3)

23

The need for syscalls?

• We cannot let a process access peripherals.

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

23

24

The need for syscalls?

• We cannot let a process access peripherals.

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

24

25

The need for syscalls?

• We cannot let a process access peripherals.

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

25

26

The need for syscalls?

• We cannot let a process access peripherals.

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

26

• We cannot let a process access peripherals.

• Why do we have privilege separation?
• Security!

• We do not know what application will do
• Do not allow dangerous operations to system

• Flash BIOS, format disk, deleting system files, etc.

• Let only the OS can access hardware
• Apply access control on accessing hardware resources!

• E.g., only the administrator can format disk

27

The need for syscalls?

• We cannot let a process access peripherals.

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

27

• We cannot let a process access peripherals.

• Why do we have privilege separation?
• Security!

• We do not know what application will do
• Do not allow dangerous operations to system

• Flash BIOS, format disk, deleting system files, etc.

• Let only the OS can access hardware
• Apply access control on accessing hardware resources!

• E.g., only the administrator can format disk

OS must mediate hardware access request from
userspace, and we handle this via system calls

28

Library Calls v/s System calls

• Library Calls
• APIs available in Ring 3

• DO NOT include operations in Ring 0
• Cannot access hardware directly

• Could be a wrapper for some computation or

• Could be a wrapper for system calls
• E.g., printf() internally uses write(), which is a system call

• Some system calls are available as library calls
• As wrappers in Ring 3

OS Syscalls

Ring 3

Library Calls

App

Hardware

29

Library Calls v/s System calls

• Library Calls
• APIs available in Ring 3

• DO NOT include operations in Ring 0
• Cannot access hardware directly

• Could be a wrapper for some computation or

• Could be a wrapper for system calls
• E.g., printf() internally uses write(), which is a system call

• Some system calls are available as library calls
• As wrappers in Ring 3

OS Syscalls

Ring 3

Library Calls

App

Hardware

30

Library Calls v/s System calls

• Library Calls
• APIs available in Ring 3

• DO NOT include operations in Ring 0
• Cannot access hardware directly

• Could be a wrapper for some computation or

• Could be a wrapper for system calls
• E.g., printf() internally uses write(), which is a system call

• Some system calls are available as library calls
• As wrappers in Ring 3

OS Syscalls

Ring 3

Library Calls

App

Hardware

31

Library Calls v/s System calls

• System Calls
• APIs available in Ring 0

• OS’s abstraction for hardware
interface for userspace

• Called when Ring 3 application
need to perform Ring 0
operations

OS

sys_write()

sys_read()

sys_send()

App

printf()

scanf()

send()

Ring 3
Unprivileged

Ring 0
Privileged

32

System calls are not function calls!
OS

sys_write()

other_func()

sys_read()

sys_send()

App

printf()
bad_func()

scanf()

send()

Ring 3
Unprivileged

Ring 0
Privileged

33

System calls are not function calls!
OS

sys_write()

other_func()

sys_read()

sys_send()

App

printf()
bad_func()

scanf()

send()

Ring 3
Unprivileged

Ring 0
Privileged

34

System calls are not function calls!
OS

sys_write()

other_func()

sys_read()

sys_send()

App

printf()
bad_func()

scanf()

send()

Ring 3
Unprivileged

Ring 0
Privileged

• Application should not call arbitrary OS
functions

• If so, app can do all operations that OS
can do; privilege separation is
meaningless!

35

System calls are not function calls!
OS

sys_write()

other_func()

sys_read()

sys_send()

App

printf()
bad_func()

scanf()

send()

Ring 3
Unprivileged

Ring 0
Privileged

• Application should not call arbitrary OS
functions

• If so, app can do all operations that OS
can do; privilege separation is
meaningless!

• How can we protect this, in other
words, how can we let apps invoke
system calls but no other OS
functions?

36

System call Design via call gate

• Call gate: a secure method to control access to Ring 0!

37

System call Design via call gate

• Call gate: a secure method to control access to Ring 0!

OS

sys_write()

other_func()

sys_read()

sys_send()

App

printf()

scanf()

send()

fwrite()

System call gate
(syscall() in JOS)

 sys_write()

 sys_read()

 sys_send()

Trap/syscall(
)

38

System call Design via call gate

• Call gate: a secure method to control access to Ring 0!

OS

sys_write()

other_func()

sys_read()

sys_send()

App

printf()

scanf()

send()

fwrite()

System call gate
(syscall() in JOS)

 sys_write()

 sys_read()

 sys_send()

Trap/syscall(
)

39

System call Design via call gate

• Call gate: a secure method to control access to Ring 0!

OS

sys_write()

other_func()

sys_read()

sys_send()

App

printf()

scanf()

send()

fwrite()

System call gate
(syscall() in JOS)

 sys_write()

 sys_read()

 sys_send()

Trap/syscall(
)

40

System call Design via call gate

• Call gate: a secure method to control access to Ring 0!

OS

sys_write()

other_func()

sys_read()

sys_send()

App

printf()

scanf()

send()

fwrite()

System call gate
(syscall() in JOS)

 sys_write()

 sys_read()

 sys_send()

Trap/syscall(
)

41

System call Design via call gate

• Call gate: a secure method to control access to Ring 0!

OS

sys_write()

other_func()

sys_read()

sys_send()

App

printf()

scanf()

send()

fwrite()

System call gate
(syscall() in JOS)

 sys_write()

 sys_read()

 sys_send()

Trap/syscall(
)

42

System call Design via call gate

• Call gate: a secure method to control access to Ring 0!• Call gate: a secure method to control access to Ring 0!

OS

sys_write()

other_func()

sys_read()

sys_send()

App

printf()

scanf()

send()

fwrite()

System call gate
(syscall() in JOS)

 sys_write()

 sys_read()

 sys_send()

Trap/syscall(
)

43

System call Design via call gate

• Call gate: a secure method to control access to Ring 0!• Call gate: a secure method to control access to Ring 0!

OS

sys_write()

other_func()

sys_read()

sys_send()

App

printf()

scanf()

send()

fwrite()

System call gate
(syscall() in JOS)

 sys_write()

 sys_read()

 sys_send()

Trap/syscall(
)

44

Call gate via Interrupt Handler

• Call gate
• System call can be invoked only with trap handler

• int $0x30 – in JOS

• int $0x80 – in Linux (32-bit)

• int $0x2e – in Windows (32-bit)

• sysenter/sysexit (32-bit)

• syscall/sysret (64-bit)

• OS performs checks if userspace is doing a right thing
• Before performing important ring 0 operations

• E.g., accessing hardware..

OS Syscalls

Ring 3

Library Calls

App

Hardware

45

Call gate via Interrupt Handler

• Call gate
• System call can be invoked only with trap handler

• int $0x30 – in JOS

• int $0x80 – in Linux (32-bit)

• int $0x2e – in Windows (32-bit)

• sysenter/sysexit (32-bit)

• syscall/sysret (64-bit)

• OS performs checks if userspace is doing a right thing
• Before performing important ring 0 operations

• E.g., accessing hardware..

OS Syscalls

Ring 3

Library Calls

App

Hardware

int $0x30
CHECK!!

46

Why should we check arguments?

• How can we protect ‘read()’ system call?
• read(int fd, void *buf, size_t count)
• Read count bytes from a file pointed by fd and store those in buf

• Usage

47

Why should we check arguments?

• Problem: what will happen if we call…

• This will overwrite kernel code with your keystroke typing..
• Changing kernel code from Ring 3 is possible!

48

Checking arguments for syscalls

• We can hook all syscalls from Ring 3 at our syscall trap handler

App

read(0, stack_buffer, 512);

System call gate
(syscall() in JOS)

 sys_write()

 sys_read()

 sys_send()

Trap/syscall(
)

OS

sys_write()

other_func()

sys_read()

sys_send()

49

Checking arguments for syscalls

• We can hook all syscalls from Ring 3 at our syscall trap handler

App

read(0, stack_buffer, 512);

System call gate
(syscall() in JOS)

 sys_write()

 sys_read()

 sys_send()

Trap/syscall(
)

Check arguments!
User address!

OS

sys_write()

other_func()

sys_read()

sys_send()

50

Checking arguments for syscalls

• We can hook all syscalls from Ring 3 at our syscall trap handler

App

read(0, stack_buffer, 512);

System call gate
(syscall() in JOS)

 sys_write()

 sys_read()

 sys_send()

Trap/syscall(
)

Check arguments!
User address!

OS

sys_write()

other_func()

sys_read()

sys_send()

51

Checking arguments for syscalls

• We can hook all syscalls from Ring 3 at our syscall trap handler

App

read(0, stack_buffer, 512);

System call gate
(syscall() in JOS)

 sys_write()

 sys_read()

 sys_send()

Trap/syscall(
)

Check arguments!
User address!

OS

sys_write()

other_func()

sys_read()

sys_send()

52

Checking arguments for syscalls

• We can hook all syscalls from Ring 3 at our syscall trap handler

App

read(0, kernel_address, 512);

System call gate
(syscall() in JOS)

 sys_write()

 sys_read()

 sys_send()

Trap/syscall(
)

OS

sys_write()

other_func()

sys_read()

sys_send()

53

Checking arguments for syscalls

• We can hook all syscalls from Ring 3 at our syscall trap handler

App

read(0, kernel_address, 512);

System call gate
(syscall() in JOS)

 sys_write()

 sys_read()

 sys_send()

Trap/syscall(
)

Check arguments!
No kernel
address!

OS

sys_write()

other_func()

sys_read()

sys_send()

54

Checking arguments for syscalls

• We can hook all syscalls from Ring 3 at our syscall trap handler

App

read(0, kernel_address, 512);

System call gate
(syscall() in JOS)

 sys_write()

 sys_read()

 sys_send()

Trap/syscall(
)

Check arguments!
No kernel
address!

OS

sys_write()

other_func()

sys_read()

sys_send()

Error
!

55

Test: using ltrace and strace

// buffer at the stack
char buf[512];
// read 512 bytes from stdin to stack.
int ret = read(0, buf, 512);

printf("Read to stack memory returns: %d\n", ret);

// read 512 bytes from stdin to kernel.
ret = read(0, (void*)0xffffffff01000000,512);

printf("Read to kernel memory returns: %d\n", ret);
perror("Reason for the error:");

56

Summary: Syscalls

• Prevent Ring 3 from accessing hardware directly
• Security reasons!
• OS mediates hardware access via system calls

• You may regard system calls as APIs of an OS

• How to prevent an application from running arbitrary ring 0 operation?
• Call gate

• Modern OS use call gate to protect system calls
• At trap handler, an OS can apply access control to system call request

57

Faults

• Faults
• Faulting instruction has not executed (e.g., page fault)

• Resume the execution after handling the fault

• Resume the execution after handling the fault

58

Page faults

• Occurs when paging (address translation) fails

59

Page faults

• Occurs when paging (address translation) fails
• Access from user but !(pte&PTE_U): protection violation

60

Page faults

• Occurs when paging (address translation) fails
• Access from user but !(pte&PTE_U): protection violation

61

Page faults

• Occurs when paging (address translation) fails
• Access from user but !(pte&PTE_U): protection violation

62

What does CPU do on a page fault?

• CPU let OS know why and where such a page fault happened

62

63

What does CPU do on a page fault?

• CPU let OS know why and where such a page fault happened
• CR2: stores the address of the fault

0xf0100064

63

64

What does CPU do on a page fault?

• CPU let OS know why and where such a page fault happened
• CR2: stores the address of the fault

• Error code: stores the reason of the fault 0xf0100064

1

64

11

65

How does OS handle page fault?

• User program accesses 0xf0100064

66

How does OS handle page fault?

• User program accesses 0xf0100064

• CPU generates page fault (pte&PTE_U == 0)
• Put the faulting address on CR2

• Put an error code

• Calls page fault handler in IDT

67

How does OS handle page fault?

• User program accesses 0xf0100064

• CPU generates page fault (pte&PTE_U == 0)
• Put the faulting address on CR2
• Put an error code
• Calls page fault handler in IDT

• OS: page_fault_handler

68

How does OS handle page fault?

• User program accesses 0xf0100064

• CPU generates page fault (pte&PTE_U == 0)
• Put the faulting address on CR2
• Put an error code
• Calls page fault handler in IDT

• OS: page_fault_handler
• Read CR2 (address of the fault, 0xf0100064)

69

How does OS handle page fault?

• User program accesses 0xf0100064

• CPU generates page fault (pte&PTE_U == 0)
• Put the faulting address on CR2
• Put an error code
• Calls page fault handler in IDT

• OS: page_fault_handler
• Read CR2 (address of the fault, 0xf0100064)
• Read error code (contains the reason of the fault)

70

How does OS handle page fault?

• User program accesses 0xf0100064

• CPU generates page fault (pte&PTE_U == 0)
• Put the faulting address on CR2
• Put an error code
• Calls page fault handler in IDT

• OS: page_fault_handler
• Read CR2 (address of the fault, 0xf0100064)
• Read error code (contains the reason of the fault)
• Resolve error (if not, destroy the environment)

71

How does OS handle page fault?

• User program accesses 0xf0100064

• CPU generates page fault (pte&PTE_U == 0)
• Put the faulting address on CR2
• Put an error code
• Calls page fault handler in IDT

• OS: page_fault_handler
• Read CR2 (address of the fault, 0xf0100064)
• Read error code (contains the reason of the fault)
• Resolve error (if not, destroy the environment)
• Continue user execution

72

How does OS handle page fault?

• User program accesses 0xf0100064

• CPU generates page fault (pte&PTE_U == 0)
• Put the faulting address on CR2
• Put an error code
• Calls page fault handler in IDT

• OS: page_fault_handler
• Read CR2 (address of the fault, 0xf0100064)
• Read error code (contains the reason of the fault)
• Resolve error (if not, destroy the environment)
• Continue user execution

• User: resume on that instruction (or destroyed by the OS)

73

Page fault example (2): Handling call stack

• inc/memlayout.h

• We allocate one (1) page for the user stack

74

Page fault example: Handling call stack

• inc/memlayout.h
• We allocate one (1) page for the user stack

• If you use a large local variable on the stack
• Stack overflow (stack grows down…)

75

Page fault example: Handling call stack

• inc/memlayout.h
• We allocate one (1) page for the user stack

• If you use a large local variable on the stack
• Stack overflow (stack grows down…)

NOT MAPPED!

76

Expand stack automatically

• Can we detect such an access and allocate a new page for the stack
automatically?

• Yes

• We will utilize ‘Page Fault’

• Observations
• Stack overflow would be sequential (access pages adjacent to the stack)

• We should catch both read/write access (both should fault)

77

Expand stack automatically

• Stack ends at 0xeebfd000

• Suppose the current value of esp (stack) is
• 0xeebfd010 STACK

0xeebfd000

0xeebfe000
esp

78

Expand stack automatically

• Stack ends at 0xeebfd000

• Suppose the current value of esp (stack) is
• 0xeebfd010

• User program creates a new variable: char buf[32]
• buf = 0xeebfcff0
• Buffer range: 0xeebfcff0 ~ 0xeebfd010

STACK
0xeebfd000

0xeebfe000
esp

buf
0xeebfc000

79

Expand stack automatically

• Stack ends at 0xeebfd000

• Suppose the current value of esp (stack) is
• 0xeebfd010

• User program creates a new variable: char buf[32]
• buf = 0xeebfcff0
• Buffer range: 0xeebfcff0 ~ 0xeebfd010

• On accessing buf[0] = ‘1’;
• movb $0x31, (%eax)

STACK
0xeebfd000

0xeebfe000
esp

buf
0xeebfc000

80

Expand stack automatically

• Stack ends at 0xeebfd000
• Suppose the current value of esp (stack) is

• 0xeebfd010
• User program creates a new variable: char buf[32]

• buf = 0xeebfcff0
• Buffer range: 0xeebfcff0 ~ 0xeebfd010

• On accessing buf[0] = ‘1’;
• movb $0x31, (%eax)
• eax = 0xeebfcff0 No translation for 0xeebfc000

STACK
0xeebfd000

0xeebfe000
esp

buf No mapping!

0xeebfc000

81

Expand stack automatically

• Stack ends at 0xeebfd000
• Suppose the current value of esp (stack) is

• 0xeebfd010
• User program creates a new variable: char buf[32]

• buf = 0xeebfcff0
• Buffer range: 0xeebfcff0 ~ 0xeebfd010

• On accessing buf[0] = ‘1’;
• movb $0x31, (%eax)
• eax = 0xeebfcff0 No translation for 0xeebfc000
• Need to allocate 0xeebfc000 ~ 0xeebfd000

STACK
0xeebfd000

0xeebfe000
esp

buf No mapping!

0xeebfc000

82

What does processor do?

• Lookup page table
• No translation!

83

• Lookup page table
• No translation!

NOT MAPPED!

What does processor do?

84

• Lookup page table
• No translation!

• Store 0xeebfcff0 to CR2

NOT MAPPED!

What does processor do?

85

• Lookup page table
• No translation!

• Store 0xeebfcff0 to CR2

• Set error code
• “The fault was caused by a non-present page!”

NOT MAPPED!

What does processor do?

86

• Lookup page table
• No translation!

• Store 0xeebfcff0 to CR2

• Set error code
• “The fault was caused by a non-present page!”

• Raise page fault exception (interrupt #14) -> call page fault handler

NOT MAPPED!

What does processor do?

87

Handling page fault on Stack access

• Interrupt will make CPU invoke the page_fault_handler()

STACK
0xeebfd000

0xeebfe000

No mapping!

88

Handling page fault on Stack access

• Interrupt will make CPU invoke the page_fault_handler()

• Read CR2
• 0xeebfcff0 STACK

0xeebfd000

0xeebfe000

No mapping!

89

Handling page fault on Stack access

• Interrupt will make CPU invoke the page_fault_handler()

• Read CR2
• 0xeebfcff0, it seems like the page right next to current stack end

• The current stack end is: 0xeebfd000

STACK
0xeebfd000

0xeebfe000

No mapping!

90

Handling page fault on Stack access

• Interrupt will make CPU invoke the page_fault_handler()

• Read CR2
• 0xeebfcff0, it seems like the page right next to current stack end

• The current stack end is: 0xeebfd000

• Read error code
• “The fault was caused by a non-present page!”

STACK
0xeebfd000

0xeebfe000

No mapping!

91

Handling page fault on Stack access

• Interrupt will make CPU invoke the page_fault_handler()

• Read CR2
• 0xeebfcff0, it seems like the page right next to current stack end

• The current stack end is: 0xeebfd000

• Read error code
• “The fault was caused by a non-present page!”

• Let’s allocate a new page for the stack!

STACK
0xeebfd000

0xeebfe000

No mapping!

92

Adding new page for stack

• Allocate a new page for the stack
• Struct PageInfo *pp = page_alloc(ALLOC_ZERO);

• Get a new page, and wipe it to have all zero as its contents
STACK

0xeebfd000

0xeebfe000

0xeebfc000

STACK

93

Adding new page for stack

• Allocate a new page for the stack
• Struct PageInfo *pp = page_alloc(ALLOC_ZERO);

• Get a new page, and wipe it to have all zero as its contents

• page_insert(env_pgdir, pp, 0xeebfc000, PTE_U|PTE_W);
• Map a new page to that address!

STACK
0xeebfd000

0xeebfe000

0xeebfc000
STACK

94

Adding new page for stack

• Allocate a new page for the stack
• Struct PageInfo *pp = page_alloc(ALLOC_ZERO);

• Get a new page, and wipe it to have all zero as its contents

• page_insert(env_pgdir, pp, 0xeebfc000, PTE_U|PTE_W);
• Map a new page to that address!

• iret!

STACK
0xeebfd000

0xeebfe000

0xeebfc000
STACK

95

Resuming execution of user process

STACK
0xeebfd000

0xeebfe000

0xeebfc000
STACK

• On accessing buf[0] = ‘1’;
• movb $0x31, (%eax)
• eax = 0xeebfcff0 No translation for 0xeebfc000

96

Resuming execution of user process

STACK
0xeebfd000

0xeebfe000

0xeebfc000
STACK

• On accessing buf[0] = ‘1’;
• movb $0x31, (%eax)
• eax = 0xeebfcff0 No translation for 0xeebfc000

• Execute the faulting instruction again: buf[0] = ‘1’;
• movb $0x31, (%eax)
• eax = 0xeebfcff0

97

Resuming execution of user process

STACK
0xeebfd000

0xeebfe000

0xeebfc000
STACK

• On accessing buf[0] = ‘1’;
• movb $0x31, (%eax)
• eax = 0xeebfcff0 No translation for 0xeebfc000

• Execute the faulting instruction again: buf[0] = ‘1’;
• movb $0x31, (%eax)
• eax = 0xeebfcff0 Now translation is valid!

98

Resuming execution of user process

STACK
0xeebfd000

0xeebfe000

0xeebfc000
STACK

• On accessing buf[0] = ‘1’;
• movb $0x31, (%eax)
• eax = 0xeebfcff0 No translation for 0xeebfc000

• Execute the faulting instruction again: buf[0] = ‘1’;
• movb $0x31, (%eax)
• eax = 0xeebfcff0 Now translation is valid!

• Continue to execute the loop..

99

Resuming execution of user process

STACK
0xeebfd000

0xeebfe000

0xeebfc000
STACK

• On accessing buf[0] = ‘1’;
• movb $0x31, (%eax)
• eax = 0xeebfcff0 No translation for 0xeebfc000

• Execute the faulting instruction again: buf[0] = ‘1’;
• movb $0x31, (%eax)
• eax = 0xeebfcff0 Now translation is valid!

• Continue to execute the loop..

By exploiting page fault and its handler, we can implement
automatic allocation of user stack!

